PROCESSES: A MATHEMATICAL MODEL
OF COMPUTING AGENTS

, Robin MILNER
University of Edinburgh, Edinburgh, Scotland

Abstract

Most of the computing agents with which computing science is concerned, for example
digital computers themselves, their memories and peripheral hardware devices, and-more
abstractly—computer programs, exhibit a behaviour which is not just the computation of a
mathematical function of their inputs, but rather a possibly infinite sequence of communica-
tions with their environment. Another way of viewing them is as transducers from
sequences (of interrogation by, or responses from, the environment) to sequences (of
responses to, or interrogations of, the environment).

A transducer is an intensional object; its extension or behaviour can be represented as a
member of a domain P of processes. P is a complete lattice, satisfying the isomorphism

P=V — (VXP),

where V is a complete lattice, the domain of responses and interrogations, and ‘=’ forms the
domain of continuous functions between two complete lattice domains. That P exists is a
consequence of Dana Scott’s inverse limit construction of a model D for the A-calculus
satisfying D =D — D.

In as much as processes may be denoted by terms in an extended A -calculus, we have a
method of specifying the behaviour of computing agents, and also of f ormally demonstrating
their properties. A crucial feature is the ability to define the operation of binding together
two processes (which may represent two cooperating programs, oI a program and a memory,
or a computer and an input/output device) to yield another process representing the
composite of two computing agents, with their mutual communications internalized.

The mathematics of processes promises to unify the behavioural study of computing
agents, both hardware and software. As a contribution to the mathematical semantics of
programming languages, this work is an extension of that of Strachey[17], Scott[16] and
others at Oxford. Similar ideas have been put forward independently by H. Beki¢[2] at the

IBM Laboratory, Vienna.

1. Introduction

We may think of a computing agent as built, by certain constructions or
composition operations, out of smaller components which are themselves
computing agents. This very general notion includes as examples

158 ROBIN MILNER

(i) a memory register,

(i) a memory, or store, as built from memory registers

(iii) a central processor,

(iv) an input/output device, e.g. a line-printer,

(v) a digital computer, as built from a memory, a centry| Proces
and other components, S50r

(vi) a computer network, as built from several digital computers
more abstractly

(vii) a program instruction,

(viii) a program, as built from instructions; and we may even mix }
levels of abstraction to obtain :

(ix) the composition of a program and a line-printer.

We more or less understand many of the composition operations o
these entities; the composition operation of example (ix) may mak |
feel uneasy, but we could argue that it is this composite object (not]-
the program) which the programmer presents as the solution to‘
problem—that is, its behaviour will meet his criteria for a correct solut;,

This paper aims at solving the following problem: what (abstr,
entities constitute the behaviours of computing agents in such a way 1},
to discover the behaviour of a composite agent we may compose |
behaviours of its components? A solution of this problem clearly
practical significance; the designer of a computing system should be at
to think of his system as a composite of behaviours, in order that he m:
factor his design problem into smaller problems, each concerned wi
realizing some behaviour as the composite of subbehaviours and event:
ally by (more) concrete computing agents.

- One area in which this problem has been almost satisfactorily solved -
that of serial, deterministic programming languages. ‘Serial’ here mean:
that the order of evaluation is fully determined. First, Strachey[17] and
Landin[8] showed how to translate programs into the A-calculus, and
when Scott[10] constructed models for this calculus in terms of his
continuous function spaces the effect was to ascribe to every program an
abstract entity, a continuous function, as its meaning (see [16]). The
technique of continuations, due independently to L. Morris and to &
Wadsworth and reported by Reynolds[13] made an important contribu-
tion in modelling features of programming languages which are not
reflected in the A-calculus, such as call-by-value, labels and jumps. Al

CESSES: A MATHEMATICAL MODEL OF COMPUTING AGENTS 159

PRO
least in simple languages the semantic function takes the form of a
homomorphism from an algebra of programs to an algebra of continuous

functions; this algebraic approach was explored first by Burstall and
Landin 3], and in his thesis[12] L. Morris shows how it helps to structure
piler correctness. A machine-checked proof of compiler

a proof of com

correctness, using functional semantics for both source and target lan-

quages, was carried out by Milner and Weyhrauch[11]; it also was
algebraically structured.

There are, however, programming language features which have not
peen satisfactorily dealt with hitherto, and they are features whose
analogue is frequently met in computing systems in general, both hard-
ware and software. The following three are not necessarily all, but are
some for which this paper attempts to find a solution:

(1) Non-terminating programs with side-effects. If the meaning of a
program is taken to be a function from memories to memories
(memory = state-of-the-store) then a program like

while true do write (read())

will just mean the totally undefined function. This is clearly unsatisfac-
tory; we need to capture the side-effect history of a program in its

meaning.

(2) Non-deterministic programs. The meaning of a non-deterministic
program is not obviously a (single-valued) function. Some authors have
therefore introduced binary relations as meanings; see for example
[4,5,7]. There are some difficulties yet to be resolved in this approach,
however. If S is the domain of memories, the meaning MNG(e) of a
program e will be a subset of S xS. Then we can have MNG(e) =
MNG(e') even if e always terminates while e’ has an extra option which
allows it to loop. To capture this difference we may make S into a partial
order by adjoining an «undefined’ minimum element 1. and then for some
s, (s, L) € MNG(e') while (s, L) & MNG(e). Now we have an embarassing
richness of possible relationships between meanings, involving set-
theoretic inclusion as well as the ordering relation on S. This reflects a real
complexity of non-deterministic programs (a point well brought out by
Manna[9]), and if there is a satisfactory generalization to relations of
Scott’s notion of continuous function it has yet to be found.

160 ’ ROBIN MILNER

(3) Parallel programs. Consider two program statements
e="‘begin x :=0; x:=x+1end
e'=x:=1

Both e and e’ mean the same as functions (or relations) over memories.
But executing e and e’ in pseudo-parallel (allowing arbitrary interleaving
of execution sequences) can result in a memory in which x has the value
1, or the value 2, while executing e’ in pseudo-parallel with another copy
of itself can yield only the value 1 for x. So in general the meaning of the
program statement ‘e par e” is not fully determined by the meanings of ¢
and e’ as subsets of S x S. The memory-access history of programs must
be included in their meanings if we are to be able to compound the
meaning of a parallel program from the meanings of its components.

Now in the case of (1) and (3) above we saw that the meaning of a
program should express its history of access to resources which are not
private to it. This is also true, perhaps more clearly, for the meanings or
behaviours of hardware devices. We may go further and say that the overt
behaviour constitutes the whole meaning of any computing agent. We
shall arrive at a suitable mathematical domain of behaviours by first
considering any computing agent as a transducer, whose input sequence
consists of enquiries by, or responses from, its environment, and whose
output sequence consists of enquiries of, or responses to, its environ-

iy

ment.
The parallel composition of two computing agents will be represented

by a behaviour consisting of all possible ways of merging the behaviours
of the components. This entails an element of non-determinism (see also
[1], where parallelism is explicated in terms of non-determinism). We
shall handle the latter in general by introducing fictitious agents called
oracles, whose function is to provide a sequence of truth values used to
resolve the arbitrary choices occurring in a behaviour, thus allowing us to
represent behaviours as single-valued functions in a certain domain.
Given a satisfactory generalization of Scott’s continuous function spaces
to relations, we could dispense with oracles, while retaining the remainder

of the model of behaviour to be presented.

2. Transducers and processes

We consider first how a transducer can be used to model a computing
agent capable of communicating with any number of others. We presup-

S: A MATHEMATICAL MODEL OF COMPUTING AGENTS 161
INT!)

ose tWO set.s L z.md V. respectively a set of addresses used to label the
munication lines of a transducer and a set of values used in

o munication.
A (Mealy-type) transducer is a quadruple (S, so, f, g) where S is a set of

states, G ES 1s 2 starting state,

f:S——-’(V——»(LxV))
put function, and

is the out
g:§— (V—25)

is the state transition function. Thus, in a given state with a given input
yalue, the output function determines both the output communication line
and the value to be transmitted on that line. Although we have allowed
many output lines we have apparently allowed only one input line.
However this restriction is only apparent; if we wish we may take the

identity of the input line to be encoded in the input value. I have chosen to
asymmetrically in that the identity of the output

treat input and output
this seems to be only a matter of expediency.

lineis made explicit, but
In the usual way we can extend f and g to
fr:S— (Vv —> (L X V)%,

g*:S———»(V*———>S),
and we can extend f to
= §——" (V== (LxXV))
tively the sets of finite and of

where for any set A, A*and A” are respec
| concerned with arbitrary

infinite sequences OVer A. We are not in genera
input sequences in V=, but rather sequences i = (i | i =0) such that Ui+
is dependent on (o, V:i) € L x V, where o) = {au, V) |i= 0); that is, the

output {a, v;) is often taken as sending vi @S input to another transducer
nse will be taken as Uit

addressed by a;, whose eventual respo
Now it is easy enough tO derive from two transducers Ti, T2
composite transducer T which results from making T and T intercom-
h. But the

municate in the manner suggested in the last paragrap
behaviour—the infinite output function f7(s0)—of T is easily seen tO
depend only on the behaviours of T, and T. We may therefore concen-
trate on first representing behaviours satisfactorily, and then defining

composition operations on behaviours.
We might take all functions ve—o (L X V) as the domain of

162 ROBIN MILNER

behaviours; however, we wish torestrict the domain to those fUnCli()nsffm.
which the i component of f(ii) depends, not simply on only some finite
initial segment of i (these would be the continuous functions) bu more
specifically only on the i initial segment of ii. The following therefore
seems more satisfactory.

First, we take the domains L, V and S to be complete lattices_
if necessary by adjoining to each a top (‘overdefined’) and bottom
(‘underdefined’) element, respectively T.,L,, Tv.1 v etc. Then the work of
Scott[15] ensures the existence of a domain P of processes satisfying the
order isomorphism

P=V — (LxXVxP),

that is, a process is a function which given a value u produces 2 pair
(a, v) €E L X V and a new process. Given a transducer (S, 50, f,), we can
then represent its behaviour by the process BEH(s,), where
BEH:S — P is defined recursively by

BEHs = Au - (fsu, BEH(gsu)).

[Note. fsu is a pair € L x V. Except between capital letters, we use
juxtaposition to represent function application and assume it to associate
to the left.] More precisely, using the fixed point operator Y,

BEH = YAF.(As.Au.{fsu, F(gsu)))
It can be shown that for two transducers (S, so, f, &) and (S’, 54, f', g")
f(s0) = f""(s5) & BEH(s0) = BEH'(s4)

which justifies our representing behaviours as processes. Moreover for
any process p there exists a transducer whose behaviour is p.

We introduce a little notation and terminology associated with proces-
ses. Let C =(L X V)X V be the domain of communications.

We define the relation t t_'y—) t', where t, t'€L XV X P and v € C¥,
as follows:

(i) If e € C* is the null sequence, then t => .

(a, v), u)y

(i) If t =(a, v, p) and pu l—_y—> t', then t //—>1t".

If pu t:l_—): (a, v, p') we call y a communication sequence of p (under u),
and p" a renewal of p (this term was used with a slightly different meaning

pROCESSES: A MATHEMATICAL MODEL OF COMPUTING AGENTS 163
in my previous paper[10]). Finally, if y" € C” and every initial segment of
' s a communication sequence of p (under u), we call y" an infinite
communication sequence of p (under u).
cOmmunication sequences are related to the extended output function

of a transducer as follows: if for transducer T = (S, so, f, g) we have

fm(SO)((llo, U,)) = ((010, Uo), (Of, Ul),)
then BEH(s0), the behaviour of T, will have under u, the communication

sequence

((aO, UO)a ul), (((al, Ul), le), s

We can now show how a simple program statement e, ‘x : =y’ for
example, can be given meaning as a process. We suppose that V' contains
a distinguished element ‘v and L a distinguished element ‘1’ (their
purpose will become apparent below). Suppose also we are executing in
an environment which associated the identifiers x, y respectively with a,
g € L. The process p modelling e will involve communications with
addresses o and f; we will later show how to bind resources (memory
registers in this case) to a and B in p, but p embodies the meaning of e
before this binding. We define p by giving its communication sequences:

]((B, N, v)a, v) w)_\
pu = = {1 Warl s

where u, v and w are arbitrary members of V. Alternatively,
p = Au{B, !, Avda, v, Aw.(l, w, L))

Now if we assume that a memory register, given input ‘", will in some
sense respond with its stored value v (# ‘!"), and given any other input v
will store v and respond with v, then the effect of binding memory
registers as resources to « and B in p will be (as a result of our later
definition of ‘resources’ and ‘binding’) that the desired assignment opera-
tion has occurred and moreover that the assigned value is sent to the
result address 1. This latter effect is what we would want for a program-
ming language in which an assignment is an expression (with side-effects)
whose value is the value assigned.

To see how this works in greater detail, the reader may wish at this
point to refer forward to the section called ‘Resources and Binding’,
which may be read independently of the intervening sections. He may

164 ROBIN MILNER

then check that the result of binding to B in p a register

s s . 1 i"i“illly
containing S say, is the process
A, S, Aw.(i, w, L))
and that further binding a register to «a yields the process
Xl 8y Lo
The side-effect of the assignment to the register bound to « IS not vet
clear. But in the more realistic situation in which the scope of the Program

variables x and y is larger than just the statement ¢ —for example, the
scope may be ‘e ;e””, where e' is some statement-we will bing our
registers to the composite of the meanings of ¢ and e’ (serial Composition
of processes is defined in the next section) and then e’ will ‘feel’ the
side-effect of e upon x.

A notion similar to process, as defined here, has been studied indepen-
dently by H. Beki¢[2]. Processes are a generalization of the notion of
‘stream’ introduced by Landin[8].

3. Combinations of processes, and oracles

We require that the domain V contains the truth-values domain T, and
we shall also need it to contain W = V x V, the domain of pairs of values,
and the domain L. So

V=L+T+W+U,

where we don’t specify U further.

T is the domain
/ T\

We need notation for the injection and projection functions between a
disjoint union domain and its disjunct domains, and also discriminator
predicates which determine in which disjunct domain an element lies. We
denote by ‘inV’ all the injection functions from L, T, ... into V, and we
postfix these functions. The corresponding projection functions (also

TRUE FALSE

L

PR()CESSES: A MATHEMATICAL MODEL OF COMPUTING AGENTS 165

fixed) we name | L, *| T, etc. For example

TI, [f V= Tv,

v|L=ya ifv=cainV for some a €L,

post

1, otherwise.

The corresponding discriminator functions (also postfixed) we name “:L",

«. T, etc. For example

T-,r lf V= Tv,

.L‘r lf v = J_v,

TRUE if v = ainV for some @ € L,
FALSE otherwise.

v:L =

For each domain A we define the conditional operation ‘D€
T—>A—>A—>A by Dxyz=Y),2 T. L. according as x = TRUE,
FALSE, Tr, 11, and we write as usual x Dy, z for Dxyz

Finally, we use the notation (=,), {=» = =), O1, Oz, ()s for pairing, tripling
and selector functions, omitting parentheses in the last three when the

argument is an atomic term.
We now introduce three binary operations on processes, giving us a

simple algebra of processes. We use the infixed symbols *+’, “?* and [".

(1) Serial composition
The operation ‘*’ is defined recursively as follows

p*p' =Av((pr)i=1)Dp'(pv): ((pv)1, (pv)2, (pv)s* p').

In other words, if 1 does not occur in vy, then

2 s) y p'w if a =1,
pv ==> (a, w,p") implies (p * p7) = {(Of, w,p"*p') otherwise.
Thus informally, p is executed until it produces a result w, which is then
fed to p’. It’s easy to show that ‘+* is associative, using properties of the
domain P.
(2) Choice of composition

p ?7p = Avfw, !, (Au.u | T D pv,p'v))

We imagine that an oracle is a resource (in the sense to be later defined)
which responds always with TRUE inV or FALSE inV, and that w € L is

166 ROBIN MILNER

a distinguished address used for consulting an orucle. Here the re

; SPonye
from the oracle is to be used to decide whether to do p or p’. ‘

(3) Parallel composition

We want for p || p* that, given a pair (w, w2), if either p or p- reaches
result—i.e., (pw,) =1 or (p'wy), = 1 —then the other is completeq and lh;
two results paired, otherwise the oracle is consulted to determine Which
of their communications to perform. So let w =0v | W and g

. L] . .) ’)H"Q
t = p’w,; then the operation ‘" is defined recursively as follows:

(pllpHv =(si=1)D(p"* Ault,{s2 u)in V. L))w,,
(2= 1) D(p * A, {u, t2)in V, L)w,,
(@, , \x.x | T D(s1, 82, Auw(s5]| p)u, woin V),
(tr, b2, Al(p ||)Wy, 1)in V))).

Another form of parallel composition, which ‘terminates’ when one GF
other (not both necessarily) of the composed processes ‘terminates’ | i
easily defined in a similar manner.

4. Semantics of programs, and criteria for adequacy

Consider a language B generated from a set A ={a,, a,, ...} of atomic

6,9 %

statements by the binary infixed operations *;’ *or’ and ‘par’. (B, *;’, ‘or',
‘par’) is an algebra; we may take it as a word algebra, or impose on the
operations just one relation, the associativity of *;’. Examples of programs

in B are

a,sas, a:

(a,or(a; as)) par (a- ; as)

Now we give the three syntactic operations their intended meanings as
respectively serial, choice and parallel composition by uniquely extending
a given semantic function J/(: A — P to a homomorphism from (B, ‘-,
‘or’, ‘par’) into the algebra (P, ‘*’, ‘?°, ‘|['). The extension is of course
possible due to the associativity of ‘*’ over processes.

If B is enriched by the following operations: conditionals (if .. then .. else
..), iterations (while .. do ..), declarations (including procedures) and block
structure, it is still possible to find corresponding operations over P which
are intuitively correct, and to extend /(to a homomorphism as before. For

ROCESSES: A MATHEMATICAL MODEL OF COMPUTING AGENTS 167
P

s of this, see [10]. In the present paper I want to highlight the
operation of binc?ing resources to processes, bu.t first to cliv.erl to the general
questi0ﬂ51 wh.at is an adequate semantl_c f.unctmn‘? [restrict the discussion
to programmmg languages, although it is relevant to the more general
question: what is an adequate abstraction of the operation by which we
compose any computing agents?

1f we accept that any abstract semantics should give a way of
composing the meanings of parts into the meaning of the whole, this is
just to say that the semantic function of a programming language which is
an algebra should be a homomorphism, or equivalently that it should
induce a congruence relation in that algebra. But programming languages
are usually designed in the first place operationally; it is only by
specifying some evaluation mechanism (possibly by an abstract machine)
that we can be sure that a language can be practically implemented. So it
is not just a lack of mathematical sophistication that has caused all
existing practical languages to be defined by evaluation rules.

As an example, an operational semantics for the language B defined
above may give an evaluation function € : B — (S — 2%), where S is the
domain of memories. In this way, evaluation determines an equivalence
relation on programs; € ~ e’ iff €(e)= €(e'). But this relation may not be
a congruence; the trivial example given in the introduction showed that
¢ ~ ¢' does not imply (e par e’) ~ (e’ par e').

Let us say that a semantic function M for B is adequate w.r.t. € iff
induces a congruence = on B which respects ~. That is, we require for

all e,e' €EB

detail

e~e' = e~e'.

This permits too much however; if we take J(to be the identity
function over B it induces the identity congruence relation (two programs
mean the same iff they are identical!) which clearly respects any equival-

ence relation.
But among the congruences respecting ~ there is a unique maximum

congruence =~z defined by
e ~ge' & V contexts €.6(e)~ €(e'),

where a context is any derived unary operation in the algebra B. That is,
~q respects ~, and any congruence = respecting ~ respects = also. So

168 ROBIN MILNER

we say ., a semantic function for B, is fully abstract w.r.t. il o,
e, ()' = B I il“
AMe)=M(e') & e =ge'

and this defines ./ uniquely in the sense that if J(, /(" are fully abstry..
w.r.t. &, then the algebras A((B) and ./('(B) are isomorphic. el

This is not a constructive definition of . ; but we should hope (o Prov
for any constructive / (e.g. A-definable in terms of processes) in the ﬁrsT
place that it is adequate, and ideally that it is fully abstract, w.r.. |
&.

It is unfortunate that the semantics we have given for B, althoug,
probably adequate, is not fully abstract for any natural €. For such an ¢
will entail (e ore’)~ (e’ or e)! on the other hand it is easy to see that‘
AM(e ore’) # A(e' ore) for the trivial reason that the two processes use
the oracle differently. In this particular case therefore the question
remains open of exhibiting the fully abstract semantic function for B
w.r.t. a suitable &, and in general I believe the criteria of adequacy and full
abstraction should be used to assess semantic functions.

d g]\/en

5. Resources and binding

The processes in J/((B), the set of meanings of our language B, wil
make communication both to @ (for oracles) and to other addresses.
depending on the set /((A) of meanings of atomic statements. We want to
show how to bind resources to these addresses.

One method of modelling resources is as processes. As an example,
suppose a memory register storing the value v is modelled by the process
REG(v). With the convention that an input ‘!’ to such a process means
‘FETCH’ and any input v (# !) means ‘STORE v’, we can define REG €

V — P recursively by

REG v = Au.(u =)D {1, v, REG v), (1, u, REG u).
Note that the renewal is a new (abstract) memory register. In [10], I
showed how to define an operation

BINDEL = P =P — P

so that for example BIND up (REG v) (which we here abbreviate to p,.)
has communication sequences given as follows: if u does not occur in v,

A B(ATHEMATICI\L MODEL OF COMPUTING AGENTS 169

PROcESSE5=
then , _
P ul if a = My W = !‘
. . b 4 " .
puy@ (as ‘v’ p') lmplles py.l.'l‘ ':: I) ,uw“' If a = ,'L‘ W ;;/ !,
(a, w,p,.) otherwise.
Thus BIND app' —the result of binding p’ to « in p—is in general a
rocess in which all communications to « in p are served by the resource
b and $O ‘internalised’.

with this definition, BIND ap € P — P gives the extension of p as a
resource user (through «). There is an analogy with A -abstraction. The
cess which results from giving a resource to a user is gained by
r to the former. However, there is here an asymmetry
petween resources and resource users which we may wish to eliminate.
For example: which is the resource and which the user, of two coroutines
or of two computers intercommunicating? The best answer seems t0 be:
whichever has control at a given instant. So if resource and user are
(abstractly) the same kind of object, and putting them together by
application yields a process, we are led to consider modelling both by the

dJomain Q satisfying the isomorphism

Q=Q—>P
which again may be constructed by Scott’s method. We may now redefine
BIND: L — P — Q recursively by

BIND ap = Ag.Av.((pv)1 = @) 2 q (BIND a(pv):)(pv):,
((pv)1, (pv)2, BIND a(pv)sq).

We may call BIND ap a ‘resource abstraction’ of p. Applied to an
argument resource ¢, it becomes a process which invokes g —by giving it
as resource a resource abstraction of a renewal of p —just when p would
pass control along the communication line labelled a. This is a generaliza-
tion of the notion of continuations mentioned in the introduction, in which
for example calling a procedure may be modelled by applying it to the
continuation of the caller.

As an example of an explicit resource definition, consider the memory

register again; we redefine REG(v) € Q recursively by
(REG v)q = Au.(u =12 q(REG v)v, ¢(REG u)u

pro
applying the latte

170 ROBIN MILNER

Another example is oracles: we call Q€ Q an oracle if
0= Aq.Av.qQ"u,

where u is either TRUE in V or FALSE in V and ' is again an Oricle
independent of g, v. This defines oracles as a subset of Q. <

Now suppose the atomic statements A of our language B are asSigne
as meanings processes which only use a single memory address . as WL'I(I
as the addresses 1 and o, and all of whose infinite COmmunicatjg,,
sequences contain «. Then any p € M (B) will have the same pProperty: i,
fact, it may be shown that if p = Al(e), e € B, and

p' = BIND w(BIND up (REG 0))02,

where () is any oracle, then p’ represents a function € V — vy j, the
sense that for any v € V we have

p'v=_up") forsomeu€e€V.

So Av.(p'v). is the function computed by e (under a particular choice
discipline imposed by). We would hope to show that the union of all
these functions, as () ranges over all oracles, is the relation C v x y/
assigned to e in some operational semantics for B ; this would amount to ;,
proof that J(1s adequate w.r.t. the operational semantics.

It was shown in [10] how a local program variable can be represented.
as we would expect by binding an appropriate resource to the process
which is the meaning of that part of the program constituting the scope of
the variable.

Let us turn now to the question of intercommunicating processes in
general. For two processes p,p' we may form the process

p" = (BIND ap)(BIND a'p").

Informally, p is given control first, and control will pass back and forth
between p and p’ via the addresses a and a’. This composition is clearly
applicable in the case of coroutines in programming.

More generally, suppose we have n + 1 processes po, ..., p., addressing
each other by ay, ..., .. The composite process does not seem to be
representable by our present definition of BIND, but we can generalize it
in a natural way, as follows. First, we introduce the domains Q,, each

defined by the isomorphism

SSFs: A MATHEMATICAL MODEL OF COMPUTING AGENTS 171

PROCE L‘A""“

0= > Ud—>"—Q>P=Q.—P

ND.EL = P — Q. we introduce for convenience the
B) . * O . 5 2y
Tc g potation: if © = XoX,... X, is any sequence of n + | terms, then

lowin : : .) _
f‘:},‘ iXie1 oo XnXKO o0 x;_1, the i™ cyclic permutation of ¥ (0=i=n). Now

ﬁcﬁne BIND. recursively by

define BI

_ o :{"“)(Pv)z if (pv) =a, 0=i=n,
(BIND» apdr - i {(pv), (pv2), F) otherwise,

where
7 = (BIND, a(pv))q: qz ... qn

(In this definition we have actually allowed p to communicate with itself
{rough ac, s0 the case n = | does not quite yield our original BIND).

We can call BIND, @p and ‘n-ary resource abstraction’ of p. We can
express the composite of the processes po, ..., Pu, in which po is given
control first and thereafter control is passed to p; via address «;, simply by
the application of n + 1 n-ary resource abstractions:

(BIND, @ “po)(BIND, @®p,) ... (BIND, @™’ pn).

So BIND, ap gives the extension of p as a member of an n +1-ary
composition of processes.

6. Discussion

Much of this paper has taken the form of a description of concepts
which may be useful in modelling the behaviour of intercommunicating
agents, together with some examples. The reader may well feel dis-
satisfied on two counts; first, that we have given no example of a proof
that a system (e.g. a program) whose meaning is expressed as a process,
performs a certain task correctly, and second that we are far from having
a theory of processes—I have done not much more than say what they are.

Nevertheless I have tried to show that processes are worth the effort of
constructing a theory, in that they model the behaviour of computing
agents in a natural way. Moreover it is becoming clear that informal (but
rigorous) proofs abolit communicating systems, analogous to proofs
about serial programs based on the assertion technique introduced by
Floyd[6] and others, are considerably harder to express (and to accept)

172 ROBIN MILNER

than the latter. A theory, which among other things isolates intcresti
subclasses of processes, will be essential for such proofs. (For ex;.mplen)
property of processes which shows signs of being useful is insensitiy
process is insensitive if it is a constant function of its input, and iy all jts
renewals are insensitive). Until a theory emerges, it is too carly t(?
consider a formal deductive system in which proofs may be executeq (and
of course checked by a machine), though it may well be that Sc:nu’g
calculus LAMBDA[15] is a good starting point. ‘

It is hoped that processes will give a firm basis for understanding and
comparing the wide variety of existing and proposed features for com.
munication and parallelism, including lockouts, protection, interruptS
semaphores, queues, priorities, etc. The extent to which they succeed in’
this is a measure of their importance.

yd

Acknowledgements
I would like to thank Rod Burstall, Jean-Marie Cadiou, Gilles Kahn, Jim
Morris, Jim Thatcher and Richard Weyhrauch for helpful discussions.

References

[1] E. Ashcroft and Z. Manna, Formalization of properties of parallel programs, Artificial
Intelligence Memo AIM-110, Stanford University, Stanford, Calif. (1970).

[2] H. Beki¢, Towards a mathematical theory of processes, Technical Report TR25.125,
IBM Laboratory, Vienna (December 1971).

[3] R. M. Burstall and P. Landin, Programs and their proofs; and algebraic approach, in: B.
Meltzer and D. Michie, eds., Machine Intelligence, Vol. 4 (Edinburgh University Press,
Edinburgh, 1969) pp. 17-43. {

[4] J. W. de Bakker, Recursive procedures, Mathematical Centre Tracts 24, Mathematical
Centre, Amsterdam (1971).

[5] J. W. de Bakker and W. P. de Roever, A calculus for recursive program schemes, in: M.
Nivat, ed., Automata, languages and programming (North-Holland, Amsterdam, 1973)
pp. 167-196.

[6] R. W.Floyd, Assigning meanings to programs, in: J. T. Schwartz, ed., Proceedings of the
Symposium in Applied Mathematics, Vol. 19 (Am. Math. Soc., Providence, R.1., 1967)
pp. 19-32.

[7] P. Hitchcock and D. M. R. Park, Induction rules and termination proofs, in: M. Nivat,
ed., Automata, Languages and Programming, (North-Holland, Amsterdam, 1973) pp.
225-251.

[8] P. J. Landin, A correspondence between ALGOL 60 and Church’s lambda-notation,
Communications of the Association for Computing Machinery 8 (1965)89-101; 158-165.

[9] Z.Manna, The correctness of non-deterministic programs, Artificial Intelligence 1(1970)
1-26.

[10] R. Milner, An approach to the semantics of parallel programs, Proc. Convegno di
Informatica Teorica, Pisa, March 1973.

MATHEMATICAL MODEL OF COMPUTING AGENTS]73
ES:

CESS
pRO

. .rand R. Weyhrauch, Compile.r correctneﬁs in a mechanized !ogic. in: D. Michie,

] R. Milne ine intelligence, Vol. 7 .(Edmhurgh Umyersnly Press, Edmburghl, 1972).
[ed.. Mac 'Correcmess of translation of programming languages—-an algebraic approach,
7] L Mo::rlSvI telligence Memo. AIM-174, Stanford University, Stanford, Calif. (1972).
[ificial In ds Definitional interpreters for higher order programming languages,
(131 1. G- R?ynoof ,the ACM National Conference, Boston 1972.

Pmceed'"gs dels for various type-free calculi, in: P. Suppes, ed., Logic, Methodology
14] D. Scotf’ Nf)o hy of Science IV (North-Holland, Amsterdam, 1973) pp. 157-8.
and Phllo-;) :’t a types as lattices, unpublished Lecture Note (1972).
151 D. Scott, 4 C. Strachey, Towards a mathematical semantics for computer languages,
(16} D. Scott a1 of' the Symposium on Computers and Automata, Microwave Research
P m{;eedlﬂsg sm osia Series, Vol. 21, Polytechnic Institute of Brooklyn (1971).
Inslsl?r’;zhel; 'II"owardS a formal semantics, in: T. B. Steel, Jr., ed., Formal Language
o .

ription Languages for Computer-Programming (North-Holland, Amsterdam,
Desc

1966).

117

