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1 Introduction

Preserving the security and privacy of data processed by computer systems is a persistent issue
and one that is becoming increasingly important. There are various approaches to providing
privacy and security guarantees in software systems: one such approach is information flow
control (abbreviated IFC), which tracks the propagation of information through a program to
verify that all information adheres to certain security or privacy requirements.

In particular, a programming language-based approach—often using security type sys-
tems—has been seen as an effective method to apply fine-grained information flow control
in practice. This project aims to survey the existing literature on information flow control and,
more specifically, the language-based approach to information flow control.

In particular, we will:

1. give general theoretical background on information flow security,

2. outline core tensions and research directions in language-based IFC,

3. and finally, explore and analyze different methods of integrating IFC into existing lan-
guages, guiding future work on making language-based IFC practical.

2 Foundational Background

A major issue in computing systems, particularly as they are increasingly used to store and
process sensitive data, is ensuring information confidentiality. Confidentiality has roots in
military and governmental security applications and prioritizes information secrecy. As such, it
relates to both notions of security and privacy (and these terms may be used interchangeably
in this survey). Information should only be disclosed to entities that are allowed to access it
and should never flow to unauthorized entities [3].

Information flow control represents a technique that enables fine-grained enforcement of
confidentiality requirements by tracking the flow of information throughout a system1. In fact,
confidentiality policies are often also called information flow policies, since confidentiality is
essentially about controlling the way information propagates through a system [3].

1Information flow control techniques can also be applied to the modelling and enforcement of integrity—often
seen as the dual property of confidentiality—which prioritizes information trustworthiness. However, the bulk
of work on information flow control to-date has focused on confidentiality.
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Central to information flow security and control is non-interference: a program satisfies
the non-interference property (or, in some formulations: a program is non-interference secure)
if the values of its public outputs do not depend on values of its secret inputs [9, 6].

This is an informal description, but serves to capture the intuition behind the property—after
all, if a public output depends on some secret input, then there is clearly an information leak
violating confidentiality. Non-interference is often seen as the gold-standard in information flow
security and comes in a number of different flavors, which will be outlined later in this section.

2.1 Access Control vs. Information Flow Control

Information flow control may seem like a natural and precise way to ensure information confi-
dentiality, but historically, access control has been the dominant technique in practice. What
is the relationship between these two paradigms? And what are some practical difficulties in
using information flow control over access control?

Access control is, in some sense, the traditional way to handle the problem of providing
fine-grained information confidentiality. Indeed, many (if not most) contemporary systems rely
on access control policies and mechanisms to specify and enforce confidentiality guarantees.

Access control limits which entities may access what pieces of information, but only at the
time of access. This is simple, but leads to a major weakness: access control is all-or-nothing
in the sense that once a subject has access to an object, it can do anything it wants with the
information represented by that object. As a result, there is no real control over the way that
information can flow through a system once some subject gains access to it—the subject is free
to improperly leak information in whatever way they wish.

Access control can thus be seen as a coarser and less complete version of information flow
control. This coarseness also leads to some theoretical limitations: in 1976, Harrison, Ruzzo,
and Ullman proved that, when using the access control matrix as a model of access control,
it is undecidable whether a right to an object will leak to an unauthorized process [8]. In
other words, in the general case, ensuring fine-grained confidentiality using access control is not
computationally tractable.

Information flow control (IFC) can be viewed as a response to this weakness. IFC seeks to
provide a finer-grained model of how information actually propagates through a system and to
provide formal guarantees about information security and privacy—accounting for the flow of
information after initial access—in a decidable way.

This, of course, comes with a host of difficulties (as is often the case whenever finer-grained
control is desired). Information flow control requires that we track how security levels associated
with subjects and objects, often known as security labels, are propagated through a system. It
also requires that we ensure all accesses at each point in any sequence of commands do not
violate the current security labels at that point.

This sort of fine-grained tracking and checking of information throughout a program exe-
cution requires much deeper and more invasive integration with (or modifications of) existing
systems. In some ways, it may require a ground-up re-implementation of the system, which is
not feasible in many cases.

Broadly, there are two sorts of foundational systems through which we can implement
the fine-grained tracking and checking required by information flow control: programming
languages and operating systems. Work on information flow control can be roughly divided
into these two categories, each with its own advantages and areas of focus.
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2.2 Language-Based vs. OS-Based IFC

Language-based IFC tracks information propagation within a program written in some IFC-
aware programming language. This allows fine-grained tracking of information through pro-
gram structures, but trusts that the underlying operating system abstraction is secure, i.e.
information flow security is preserved when accessing system resources like files and sockets.

OS-based IFC monitors information flow through underlying system resources using operat-
ing systems abstractions. This provides security and privacy guarantees about information flow
through those low-level system resources, but has no visibility into (or very limited and often
inefficient visiblity into) the flow of information through structures within programs themselves.

The concerns of these two categories of IFC work are, in many ways, orthogonal and mutu-
ally beneficial. In an ideal world, we would have both programming languages and operating
systems that allow for such fine-grained information flow control and that cooperate to provide
efficient end-to-end information flow security guarantees.

There are some important practical distinctions between these two categories that are worth
pointing out:

1. OS-based IFC is more general in the sense that any program running on an OS equipped
with IFC enjoys the information flow security benefits provided by the OS.

2. OS-based IFC can also be viewed as more heavy-handed, since it requires modification to
the operating system [12] or an entirely new operating system altogether [20]. In many
production settings, choice of operating system is under the control of some centralized
(and often conservative) administrator and affects all other users of the machines on
which it is installed.

3. Language-based IFC is more specific in the sense that a program must be written the IFC-
equipped language in order for it enjoy the desired information flow properties. However,
it offers fine-grained and often very efficient analysis of information flow within programs
themselves, since the analysis is program-specific and can often be done statically. Com-
paratively, OS-based IFC often must be dynamic, since the OS usually has no information
about program behavior prior to program execution. This comes with a performance cost.

4. Language-based IFC can also be viewed as more flexible, particularly in production set-
tings, since the programmer often has more control over what programming language
they use (as long as the language runs on commodity operating systems and hardware).

This survey focuses on language-based IFC, although the boundary between the program-
ming languages and operating systems work on IFC is often blurry and closely intertwined [12].

2.3 The Lattice Model of Information Flow Security

The lattice model of information flow security, as introduced2 in Dorothy Denning’s seminal
1976 paper [4], forms the foundation of nearly all later work on information flow security.
That said, it can also be viewed as the genesis of language-based information flow security
more specifically, since Denning’s line of work (which was expanded upon in a 1977 paper by
Dorothy and Peter Denning [5]) was focused on providing efficient compile-time guarantees of
information flow security.

2Note that the lattice model of security itself is neither unique to information flow security nor first introduced
in the context of information flow security. In fact, lattices are also historically used to model access control
models like Bell-LaPadula [17].
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The key idea in Denning’s 1976 paper is that it is possible (and justified) to model informa-
tion flow security as a universally bounded lattice of security classes. Here, a lattice (sometimes
more explicitly called a complete lattice) is the algebraic structure that comprises a partially
ordered set in which each pair of elements in the set has a least upper bound and a greatest
lower bound. A universally bounded lattice is a lattice that also has a top element (an element
greater than all other elements in the set) and a bottom element (an element less than all other
elements in the set).

A partially ordered set is a set of elements and an associated relation function between those
elements that is: reflexive, antisymmetric, and transitive. Specifically, this means the relation
is:

1. reflexive: for any element a, a ⊑ a (where ⊑ is the ordering relation)

2. antisymmetric: for any pair of elements a and b, if a ⊑ b and b ⊑ a, then a = b

3. transitive: if a ⊑ b and b ⊑ c, then a ⊑ c

In the lattice model of information flow security, elements of the lattice are security classes
and relations in the lattice are flow relations from security class a to security class b, where
information in class a is permitted to flow into class b. Security classes are bound to entities in
the system, either through static binding (where the security class of an entity is constant) or
dynamic binding (where the security class of an entity is permitted to vary with its contents).

Denning observes that certain assumptions are necessary about relations between security
classes if the universally bounded lattice model is to hold, but that these assumptions are
justified and follow directly from the natural semantics of information flow. Specifically, the
following assumptions—which define a universally bounded lattice—are (a) required for the
consistency of an information flow security model (all flows implied by a permissible flow should
also be allowed by the flow relation) and (b) lose no generality (all information flow traces
that can be captured by our security classes and flows-to relation can be modelled with these
assumptions):

1. ⟨SC,→⟩ is a partially ordered set (where SC is the set of security classes and → is the
flow relation)

2. SC is finite

3. SC has a lower bound L such that L → a for all a ∈ SC

4. ⊕ is a least upper bound operator on SC

5. The above assumptions additionally imply the existence of ⊗, a greatest lower bound
operator on SC, and unique upper bound H

The interested reader can find the full argument justifying these assumptions in Section 2.2 of
[4].

A core advantage of the lattice model is that, by modelling information flow in this way—which
is sound, but not precise—we sidestep Harrison, Ruzzo, and Ullman’s earlier undecidability re-
sult (at the cost, of course, of a loss of precision) [5]. In this context “sound, but not precise”
means: some information flow secure programs will be rejected by this model (not precise), but
all programs certified by this model will be information flow secure (sound).
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2.3.1 An Early Security Type System

Denning and Denning use this lattice model to construct a language in which information flow
security can be certified at compile time [5] using, essentially, a bare-bones effect-tracking type
system. In many ways, all future work on security type systems follows from this idea3.

The core novelty of Denning and Denning’s typing mechanism is the way it exploits the
structure of lattices to provide an efficient way to check fine-grained information flow. At a
high-level, the lattice structure enables the following optimizations:

• The transitivity property of flow relation allows us to compose information flow certifica-
tion checks, since small, certified, local flows can be automatically combined into larger,
certified, global flows. In Denning and Denning’s toy language, the semantics for flow
relations need only be defined for a small number of core syntactic constructs. The se-
mantics for flow relations for any program in their toy language can be constructed from
these core semantics.

• The existence of a least upper and greatest lower bound for all subsets of the set of security
classes SC reduces the amount of information needed to track information flow. Specifi-
cally, the compiler is able to group the security classes of sources and flows together using
these bounds and check flows between the bounds, instead of between all the individual
security classes.

2.3.2 Strengths and Limitations

Two strengths of the Denning-style type system approach are that (a) it can be done statically
at compile-time, meaning that there is simultaneously no runtime overhead and that certified
programs are correct-by-construction and (b) it is able to capture and check both explicit and
implicit flows.

Explicit flows occur when information is passed explicitly from the right-hand side to the
left-hand side of an assignment statement, such as public := secret [14]. In this statement,
information represented by secret is explicitly flowing into the entity represented by public.

Implicit flows occur when information is passed implicitly via a control structure (like an if-
then-else statement) [14]. For example, the statement if secret then public := somevalue

contains an implicit flow: the value of public depends on the value of secret, so information
is flowing “implicitly” from secret to public.

However, there are some major limitations of Denning and Denning’s language and type
system, which work afterwards sought to address.

• The toy language introduced in Denning and Denning’s paper is extremely limited.
Adding Denning-style IFC type-checking to more expressive and realistic languages is
a long-standing research question (and one of the major contributions of the Jif/JFlow
project) [10, 15].

• The type-checking system in Denning and Denning’s paper is not ergonomic (by certain
standards) in the sense that it requires many manual annotations.

• The type-checking system is not realistic in the sense that it fails to model important real-
world patterns like information declassification (and the dual operation: endorsement).

• The purely static type-checking system is relatively restrictive and has difficulty modelling
dynamic binding of security labels to entities or dynamically changing security policies.

3Indeed, the term “Denning-style type systems” is often used to describe this line of work.
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Indeed, these tensions between expressiveness, flexibility, efficiency, and usability have spurred
on a rich line of research.

3 A Core Tension: Dynamic vs. Static

One such core tension in language-based IFC is the tradeoff between dynamic and static en-
forcement. Traditional static analysis, e.g., Denning-style type systems, tracks variable security
labels and checks the code for security and privacy violations before running it. This does not
result in any runtime overhead. However, being conservative, there is a risk of rejecting secure
programs. Dynamic analysis, such as a monitor at runtime that checks the execution in real
time, is more flexible but runs the risk of not being able to block insecure programs.

3.1 Theoretical Boundaries

An important distinction between types of information flow control enforcement is the differ-
ence between flow-insensitive and flow-sensitive enforcement. The distinction also boils down
dynamicism vs. static checking:

• Flow-insensitive means fixed labels for variables throughout execution.

• Flow-sensitive variable labels can dynamically change over time.

Flow-sensitive static information flow analysis is a generalization of flow-insensitive static anal-
ysis, and accepts more information flow secure programs. It has also been shown that, in
the flow insensitive case, purely dynamic-based information flow enforcement can not only en-
force the same degree of information flow security as Denning-style static analysis—namely
termination-insensitive non-interference—but is also more permissive (in that it accepts more
secure programs) [16].

That said, Russo and Sabelfeld give an interesting impossibility result in the flow-sensitive
case that sheds light on an important theoretical boundary: it is not possible to construct a
purely dynamic monitor that is sound and also as permissive as a static type-system [14].

Russo and Sabelfeld go on to show that it is possible recover soundness in the flow-sensitive
case by taking a hybrid approach, combining both a static type system and a dynamic monitor.
They propose a general framework for such a hybrid mechanism, built on a simple imperative
language, that is parametric over the enforcement actions of the monitor (i.e. block output,
output default values, or suppress event) [14, 9].

3.2 Dynamic Labels, Statically

It is also interesting to consider how much dynamicism, i.e. with dynamic labels and poli-
cies, can be moved to static compile-time checks. Indeed, Zheng and Myers consider the use
of λDSec, a typed lambda algorithm language that combines dynamic labels with static con-
straints using dependent types (types that depend on program values) [21]. Generally, dependent
types can move certain checks that can conventionally only be done at runtime into a static,
pre-execution typing check.

That said, in order to completely ensure secure control of information flow in situations
where access rights can be dynamically changed and determined, it is necessary to also use
dynamic labels that can be manipulated and checked at runtime, with some sort of dynamic
monitor [21].
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4 Practical Integration into Existing Languages

A major challenge for existing IFC techniques is integration with existing languages. In many
ways, this is another dimension of the core tensions mentioned earlier: we gain a degree of
usability and practicality by integrating with existing languages, at the possible cost of expres-
siveness, flexibility, and efficiency.

Ideally, we would like to (a) use an existing (and hopefully “mainstream”) language (b)
with minimal modifications (c) to enforce deep and precise information flow security properties
of programs (d) with minimal runtime overhead and (e) minimal cognitive overhead for the
programmer. How can we satisfy all these ideals?

Here, we survey some existing approaches to easing these tensions, all of which integrate with
existing programming languages. We outline each approach, find commonalities and differences
between the techniques they use, consider the portability of some of those techniques, and
then generalize these ideas to broader guidance for both future IFC integrations with existing
programming languages as well as the design of programming languages themselves.

4.1 JFlow

JFlow is a language extension based on Java. It adds information flow security labels and
related keywords, but is still fully compatible with Java syntax and finally generates ordinary
JVM bytecode. Unlike Jeeves and Carapace, the other two examples we analyze, JFlow is not
available as a library. JFlow is primarily a static, type-system–based approach to IFC that
compiles decentralized labels to ensure data flows only to authorized principals [10].

4.1.1 An overview of JFlow

JFlow is an extension of the Java language that uses static checking of flow annotations as an
extended form of type checking. Programs written in JFlow can be statically checked by the
JFlow compiler to prevent information leakage through storage channels. Static information
flow analysis has been proposed for a long time, but it has not been widely adopted by main-
stream security practices. The key reason is that previous models are too limited or too strict
to be implemented. The goal of JFlow is to introduce stronger expressiveness while maintaining
the advantages of static checking, allowing developers to write practical programs in a natural
way [10].

4.1.2 Lessons on language integration

Information-flow control can be integrated into a mainstream object-oriented (OO) language
largely through static typing, without sacrificing usability. The central design choice in JFlow
is to keep the security logic orthogonal to the core program logic, while enforcing it early—at
compile time—rather than at run time [10]. To make this practical, JFlow adds a small amount
of syntax to Java, pushes most annotation work onto the compiler, and resorts to targeted run-
time checks or declassification only when static reasoning would be overly restrictive.

1. In JFlow’s static information flow control, each variable is bound to a static security label.
Developers explicitly annotate the owner of the data and its authorized readers using the
syntax {owner:[readers]} in Java source code. The type-label checker at compile time
verifies confidentiality levels for each assignment: an assignment like z = x is allowed
only if the label of x is not weaker than that of z. Once approved, the target variable z

receives a new static label binding, and future operations cannot bypass this constraint,
thereby blocking potential data leakage at the semantic level.
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2. It is impractical to require programmers to manually annotate labels for every variable.
To address this, JFlow reduces the annotation burden through default label inference and
implicit label polymorphism. If a variable, parameter, or method declaration omits the
{owner:[readers]} label, the compiler infers it based on context. Local variables are
inferred from usage, instance fields default to the public label {}, and method parameters
are treated as ”implicitly labeled”. Thus, general methods like add(x, y) do not need to
be duplicated for different security levels. Method return values and exceptions receive
the join of all parameter labels to ensure the safe closure of information flow.

3. JFlow primarily relies on static type-label checking, but includes limited runtime checks
for situations that static analysis cannot resolve. The main mechanism is the switch-on-label
construct: at runtime, the label of an expression is evaluated, and the system executes the
first branch with a matching or stricter label. If no match is found, a controlled exception
is thrown to prevent leakage [9]. Additionally, JFlow treats principal as a first-class
value, which can be used in policy declarations and actsFor reasoning, allowing changes
in subject hierarchy to be safely verified at compile time.

4. To support practical use, JFlow enables information declassification. If a process has the
authority to act for a subject p, it may remove the security policy owned by p (including
its actsFor chain), thereby lowering the data’s label and releasing the information safely.
This feature is essential, as strict enforcement without declassification would often be too
restrictive for real-world applications[10].

5. Earlier IFC systems lacked support for class-level label parameterization and often sim-
ulated ”polymorphism” through runtime coercion, introducing new covert channels [15].
JFlow addresses this limitation by supporting parameterized labels and subjects. Classes
and interfaces can declare parameters like <L> or <P> for static type safety across labels
or principals. For example, Vector<L> becomes a lightweight dependent type. To en-
sure well-formedness, only immutable values may be used as parameters, and covariance
is restricted (e.g., such parameters may not appear in mutable fields or method argu-
ments). Additionally, declassification authority may be bound to class parameters via
the authority clause, which requires the instantiating context to possess the appropriate
agency rights[10].

4.1.3 Main contributions

Compared with the earlier purely static security level model, JFlow introduces two mechanisms,
label polymorphism and controlled degradation, while maintaining the information flow check
at compile time. Label polymorphism allows the same piece of code to serve multiple secu-
rity labels, greatly improving reusability. Controlled degradation provides an auditable secret
release channel, which not only avoids ”misblocking that should not be blocked” but also main-
tains a strict confidentiality boundary. Flow achieves a better balance between expressiveness
and false positive rate [10].

In addition, although JFlow needs to add dedicated extensions to the Java compiler, it
moves all security checks forward to the compilation stage, so there is almost zero overhead
during execution. This model is particularly suitable for systems that are performance-sensitive
or must pass formal verification, such as high-frequency trading and embedded firmware. Al-
though runtime solutions such as Jeeves are more flexible, they may be limited by solution
overhead in strict real-time or resource-constrained scenarios. Carapace, by contrast, favors
transparency and dynamism, whereas JFlow trades that flexibility for earlier, cost-free enforce-
ment in performance-critical domains.
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4.2 Jeeves

Jeeves [19] represents another approach to integrating information flow control into existing
languages for use in practical projects. Jeeves is still a novel domain-specific language, but it
is embedded in an existing language—Scala (and later, Python)—and can be used as a library.
Jeeves is also primarily a dynamic approach to IFC, using a runtime system based on SMT-
solving to dynamically check that appropriately values are emitted from output channels like
printing.

4.2.1 An overview of Jeeves

Jeeves a functional constraint language implemented as an embedded domain-specific language
in Scala. Jeeves is primarily a dynamic IFC system and operates on output channels (visible
program side-effects like printing to the screen, writing to a file, or even sending an email) at
runtime. In particular, it checks the state of security labels on subjects (usually users) and
objects (some information) at those output channels and dynamically determines what output
to emit.

Jeeves is based on three main concepts: sensitive values, policies, and contexts. These
concepts are essentially just iterations on the core idea of security label tracking, realized in a
particular practical form.

Sensitive values in Jeeves are pairs of values ⟨v⊥, v⊤⟩l, where v⊥ is the low-confidentiality
value (which should be revealed in low-confidentiality settings), v⊤ is the high-confidentiality
value (which should be revealed in high-confidentiality settings), and l is a variable representing
the security level (either ⊤ or ⊥). Policies are constraints on the values of level variables (which
are just security labels, in the classical parlance) which declaratively specify how and when to
set level variables to ⊤ or ⊥ and, by implication, which value (v⊥ or v⊤) can be revealed at what
output channels. Policies may refer to a context, which characterizes an output channel and
is used to associate policies with output channels (i.e. “apply this policy on output channels
with this context”).

The constraint part of Jeeves is perhaps the most important part of the system: it refers
to the fact that Jeeves is able to automatically enforce the high-level policies written by the
programmer (in a decidable logic) using a constraint solver. This approach directly addresses
the programmer usability problem: as long as the programmer can properly specify the appro-
priate confidentiality policies and annotate the proper security labels for some set of entities,
the system can enforce a degree of information flow security without further manual effort.

4.2.2 Lessons on language integration

A major contribution of Jeeves is not a language-specific integration technique, but rather a
general approach to making IFC more practical.

On the programmer usability side, it proposes a model in which the core program logic
and the enforcement of security and privacy policies are separate components. Additionally, it
tries to further ease developer burden by making policy enforcement declarative: the developer
simply specifies what a policy should be (in the Jeeves domain-specific language) and the system
automatically ensures that values sent on output channels adhere to that policy.

On the language integration side, its focus on dynamic runtime checks rather than static
compile-time checks, allow Jeeves to be more easily integrated as a library into existing lan-
guages without specialized language extensions. In particular, Jeeves provides the following
guidance on language integration:
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1. Finding ways to implement IFC as a library can be helpful in easing language integration.
Such a library generally needs to enforce checks on side-effecting operations like I/O.

2. Dynamic IFC is more immediately practical as a language library, since its checks are
performed at runtime and thus do not require changes to the host language’s compiler.
The deeper changes needed for fully static IFC often require the use of compiler exten-
sions or certain advanced type system features not currently present in most mainstream
languages.

3. Information flow control requires certain semantic language properties to hold: proper-
ties that mainstream languages do not have. Implementing an embedded domain-specific
language in another, more mainstream host language is one way to obtain the benefits
of a custom language with the desired semantics, while still having access to a broader
language ecosystem. It allows pieces of an application to be written in the embedded
DSL and integrated into a larger program written in the host language. This points to a
need for languages that have good support for implementing embedded domain-specific
languages, i.e. that have features like operator overloading and a fleshed-out metapro-
gramming/macro system.

4. A declarative approach to policy specification and enforcement can ease developer burden
by reducing the amount of annotations and custom enforcement logic. In particular, SMT
solvers are an interesting tool for solving the constraints necessary in such an approach.
This points to a need for better language integration with such solvers (in fact, the Jeeves
authors had to implement a custom embedding of the Z3 SMT solver into Scala before
implementing the higher-level Jeeves library).

The Jeeves approach to providing a form of dynamic IFC is fairly portable across languages,
since it requires very few language-specific features. Any language that allows things like simple
macros and operator overloading (which many mainstream languages like Python do allow)
and that has good integration with an SMT solver (which often uses those same features, like
macros and operator overloading), can provide Jeeves-style IFC. Indeed, the authors of the
original Scala version of Jeeves later ported the idea to Python (perhaps hoping for broader
adoption).

Of course, the downside is that this approach is still almost purely dynamic, which results
in performance overhead that may be unacceptable for certain applications. It is also more
difficult to get certain formal guarantees with a dynamic approach, such as implicit flow and
covert channel detection (although not theoretically impossible) [11, 1].

4.3 Carapace

Carapace is a static-dynamic hybrid IFC method [2]. It is offered as a Rust library with in-
tegrity labels that function with unaltered Rust and its compiler. With the exception of two
types of code that need to be trusted and audited: (1) code specifically marked as declassifying
or endorsing data, and (2) explicitly unsafe code (code that uses Rust’s unsafe keyword), appli-
cation code that uses Carapace is untrusted (i.e., not included in the TCB) because Carapace
guarantees noninterference.

4.3.1 An overview of Carapace

Carapace employs the classic non-interference IFC formal model, which uses secrecy and in-
tegrity labels to constrain data flow and supports trusted policy exceptions (i.e. decryption and
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endorsement). Carapace supports the use of both static tags (handled by the Rust type system
at compile time) and dynamic tags (managed at runtime), with separate type representations
and join operations.

Carapace achieves strong noninterference guarantees without requiring modifications to the
underlying language or compiler by leveraging Rust’s existing features such as macros, type
system, and encapsulation.

Its core mechanism involves labeling every value with both a secrecy label (indicating who
can read it) and an integrity label (indicating who can influence it). Access to these labeled val-
ues is controlled through lexically scoped secure blocks, with type and runtime checks ensuring
that label constraints are respected.

Controlled exceptions to these rules, such as declassification and endorsement, are permitted
only within trusted blocks and are governed by the principal’s capabilities. This design can be
ported to other languages that support an equivalently rich type system, lexical scoping, and
runtime policy enforcement, following the central principle of encapsulating sensitive data in
security-aware types and rigorously restricting their flow.

4.3.2 Lessons on language integration

1. Library-based IFC is viable but constrained: Carapace proves that fine-grained hybrid
IFC can be enforced as a library in Rust without modifying the language or compiler. As
long as the host language has a sufficiently expressive type system, macro capabilities,
and encapsulation features, it is possible to enforce powerful security properties through
a library alone.

2. Lexical scoping enables secure reasoning: Lexically scoped secure blocks simplify both
enforcement and reasoning about information flow, while languages with global or loosely
scoped control flow (e.g., dynamic languages or callback-heavy systems) make secure flow
tracking harder. Therefore, a language that supports clear scoping constructs (e.g., Rust
blocks) is helpful.

3. Noninterference enforcement requires control over side effects: Carapace restricts side ef-
fects, including hidden ones (destructors, deref, operator overloads), using Rust’s trait sys-
tem. Without side-effect tracking or restrictions, it is difficult to enforce IFC soundly—especially
for implicit flows.

4. Macros and other DSL facilities: Rust macros let Carapace transform syntax and enforce
discipline, e.g., disallowing unsafe access outside secure blocks. A macro system or code
transformation tool is invaluable for enforcing IFC without modifying the base language.
Languages like Java (with annotation processors) can simulate this; languages without
macros need AST rewriting or interpreters.

4.3.3 Exploring the Portability of Carapace

Based on the introduction of Carapace, we will explore the possibility of porting it to other
languages such as Java and Python.

Carapace in Java To port Carapace to Java, static analysis tools, runtime tagging libraries,
code staking, and rewriting capabilities are needed. Generally, Java’s type system is not quite
expressive enough, lacks a macro mechanism, and is not able to statically track side effects.
That said, there are ways to simulate the language features required to port Carapace to Java:
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• Strongly typed systems with generalization: Java supports generics and interfaces (e.g.,
SecureValue<T>), but its expressive power is weak and it does not support Rust’s trait
bounds or higher-order types, which need to be checked at compile time by using Java
annotations (e.g., @SecLabel, @IntLabel) in combination with a static analysis tool (e.g.,
Checker Framework) to solve this problem.

• Code conversion or macro functions: Carapace uses process macros in Rust to extend
secure block! and insert checking code while Java does not have a macro mechanism,
but similar functionality can be achieved through: compile-time annotation processor;
aspect-oriented programming (e.g., AspectJ); source code conversion tools (e.g., Spoon
or the Javac plug-in).

• Encapsulation and Access Control: Carapace utilizes Rust’s modular encapsulation to
restrict access to SecureValue fields. While Java supports private and package access, it
cannot restrict access based on context (e.g., whether or not it is in a secure block), and
needs to maintain access constraints through code staking and runtime checking.

• Runtime label checking: Carapace uses fast and low overhead tag representations (e.g.
64-bit tags). Java, on the other hand, can represent tags as objects (e.g., Set<Tag>),
but this can lead to possible performance degradation at runtime due to the high cost of
object creation and the lack of underlying memory control. Performance can be optimized
by using pooled immutable sets of tags and comparing them to references.

• Ability to control side effects: Carapace requires functions in secure blocks to be side-
effect free, and Rust enforces this restriction through a trait system and negative impl.
Rust enforces restrictions through a trait system and negative impl. Java does not have
a type-level checking mechanism for side effects. You need to mark pure functions with
the @Pure annotation or utilize static tools for side-effect checking or disable specific API
calls via bytecode stubbing.

Carapace in Python To port Carapace to Python, security wrapper classes, a context
manager, a dynamic labeling system, and a permissions context are needed. Python has no type
system or side-effect constraints; everything is controlled by the runtime and the development
specification. That said, there are also limited ways to simulate the required features in Python:

• Tag encapsulation mechanism: Rust uses SecureValue<T, S, I> to encapsulate labeled
values. Python can encapsulate arbitrary objects using classes or decorators. Python
supports dynamic encapsulation, but there is no way to statically restrict access, so it’s
up to the developer or a tool to check for it.

• Runtime label checking: Python has no type checking and no compile-time constraints;
all IFC checking must be done at runtime. While Python is flexible and can dynamically
insert checks, all safety can only be handled at runtime, which lacks performance and
robustness.

• Emulating the secure block mechanism: Python has no macro mechanism, but can emu-
late secure block! semantics with a context manager (the with statement).

• Capabilities and trusted blocks: The set of permissions for the current principal can be
maintained through a global context.
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• Side effect control is difficult to achieve: Python functions do not have side-effect markers,
and there is no way to disable I/O, network calls, or printing. So you can’t use traits or
a type system to restrict behavior like Rust does. Therefore, manual auditing or static
analysis tools (such as AST checking) are required when side effects may be implicit in a
secure block.

4.4 Comparison of Integration Techniques

These instances of IFC integration with existing languages have many commonalities. All use
the idea of security labels and track those labels through program executions (either statically,
dynamically, or both), try to automate parts of annotation burden (using type inference or
constraint solving), and aim to separate code for core functionality from code for security
enforcement in an effort to untangle cross-cutting concerns. These are all excellent ideas to
improve the efficiency and usability of language-based IFC.

Interestingly, they also all focus on providing termination-insensitive non-interference (a full
taxonomy of non-interference can be found in [9]), which is a relaxed form of non-interference in
which high-secrecy values can affect the termination of a program (so information leaks could
happen through program termination).

This is a purely practical decision and a very reasonable one: after all termination is incredi-
bly difficult to track in practice and very few languages require all programs to terminate, given
how restrictive that would be. Even languages that do require termination—often dependently-
typed languages for formal proof, such as Agda and Rocq—cannot prevent programs from
terminating abnormally, i.e. through a stack overflow [14, 2].

It is also interesting that these three integration methods represent three broad categories
of approaches to integration:

1. JFlow represents the “write a new language with a novel type-checker” approach. It
achieves a degree of language integration by compiling to a mainstream language—Java.
This approach is the most flexible and expressive, since it gives the language developer
full control over what language features are present and what forms of IFC to support.
However, one could argue that it has the highest barrier to entry for programmers.

2. Carapace represents the “hack the type system of an existing language to support effect
tracking” approach. This integrates directly into the ecosystem of an existing language,
but comes at the cost of relying on type-system features that may be bleeding-edge or
otherwise unfamiliar. Also, not all type systems in existing languages are amenable to
encoding the features required for state-of-the-art language-based IFC.

3. Jeeves represents the “delegate most checks to runtime using some constraint solver”
approach. This is the most flexible approach, since it does not rely at all on the host
language’s type system and thus sidesteps many of the most problematic barriers to
language integration. However, it also abandons many of the benefits of static checking,
such as zero runtime overhead or soundness in the case of flow-sensitive information flow
security.

4.5 Guidance for Future IFC Integration

Generally, a library-level approach is desirable for practical adoption. Requiring programmers
to use a novel language, even if it is based on a familiar one like Java, may be too much to
ask. For example, although the Jif/JFlow project supplies an incredibly rich, state-of-the-art
language-based IFC system and compiles directly to Java through type erasure, it has not seen
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widespread industry adoption4. As such, most recent attempts to make language-based IFC
practical have focused on providing a small, library-level DSL in an existing language [19, 2, 13].

If purely dynamic IFC is acceptable, the library-level approach is already practical. Taking
inspiration from Jeeves, any language that has a macro system (or other facilities for imple-
menting embedded DSLs) can implement a library that dynamically tracks and checks that
side-effects do not violate the specified security labels at runtime, using some kind of ad-hoc
constraint solver or general-purpose SMT solver.

However, if any form of static checking is desired, the library-level approach becomes much
more difficult. In essence, what is required amounts to implementing an effect tracking type
system, which is the core functionality of static, language-based IFC. In many modern lan-
guages, this is simply impossible without having to resort to heavy-handed techniques like
compiler or interpreter modification. However, it is much easier in pure, functional languages
that already strictly control side-effects (like Haskell). Indeed, monads—a way to handle side-
effects in a purely functional language—have resulted in a rich tradition of library-level IFC
implementation in Haskell [13, 18].

Broadly speaking, without more expressive mainstream languages, particularly languages
that have full-fledged effect systems (and perhaps even dependent types [7]), practical imple-
mentation of expressive, flexible, state-of-the-art static IFC will remain difficult, if not impos-
sible. Even in Rust, a more recent language with a relatively rich type system (compared to
other similarly popular languages), static IFC can only just barely be implemented in a research
project [2] and only through building an ad-hoc effect tracking type system using bleeding-edge
features of the Rust compiler. There may still be ways to go, in this respect.

5 Conclusion

We have presented a brief survey of language-based information flow control. In particular, we
cover a bit of historical context, skim the basic theoretical foundations of this line of work, and
analyze three different methods of integrating IFC into existing languages. We also extract a
few lessons from these methods and distill some concrete guidance for future work in language
integration of IFC.
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